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Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit Periodizitatsphanomenen in stabiler
motivischer Homotopietheorie. Bei motivischer Homotopietheorie handelt es sich
um eine Perspektive auf algebraische Varietédten, die die Anwendung homotopiethe-
oretischer Methoden auf algebro-geometrische Probleme erlaubt, siche [MV99].

Uber dem Grundring C ist die entsprechende stabile motivische Homotopieka-
tegorie Sp¢ strukturell ahnlich zur klassischen stabilen Homotopiekategorie Sp, und
es gibt einen Vergleichsfunktor Spr — Sp. Diese Beziehung wird sehr erfolgreich
eingesetzt um neue Resultate in klassischer stabiler Homotopietheorie zu erhalten,
so zum Beispiel von Isaksen in [Isal4].

In klassischer stabiler Homotopietheorie geben die sogenannten Nilpotenz- und
Periodizitatstheoreme von Devinatz, Hopkins und Smith [DHS88] umfangreiche
Auskunft iiber periodische Strukturen in Homotopiegruppen. Konkret existiert
fiir jedes kompakte p-lokale Spektrum X eine nicht nilpotente Selbstabbildung
¥'X — X. Diese Selbstabbildung ist dadurch charakterisiert, wie sie auf den
komplexen Bordismusgruppen MU, X von X wirkt. Die auftretenden Arten von
Selbstabbildungen gliedern sich nach sogenanntem Typ, beschrieben durch eine
natiirliche Zahl n € N. Fiir jedes n existiert eine Homologietheorie K (n), (die n-te
Morava K-Theorie), die genau Selbstabbildungen vom Typ n detektiert. Selbstab-
bildungen vom Typ n sind eindeutig bis auf Potenzen. Alle Selbstabbildungen von
X, die nicht von einem dieser K (n), detektiert werden, sind nilpotent.

In motivischer Homotopietheorie existieren zusétzlich zu Analoga dieser soge-
nannten v, -Selbstabbildungen auch noch andere nicht nilpotente Selbstabbildungen.
Ein Beispiel ist die Hopfabbildung 1 € m,.(S), deren Analogon in motivischer
Homotopietheorie iiber C nicht nilpotent ist, im Gegensatz zur klassischen Sit-
uation. Dieses Beispiel wurde von Gheorghe in [Ghel7a] zu einer unendlichen
Familie sogenannter w;-Selbstabbildungen erweitert, wobei 1 zu wy korrespondiert.
Analog zur klassischen Situation werden diese durch Homologietheorien K (w;)..
detektiert. Andrews konstruierte in [And14] das erste explizite Beispiel einer
wi-Selbstabbildung.

Die vorliegende Arbeit erweitert diese Familie um weitere Typen von Selbstab-
bildungen j;; fiir jedes ¢ > j > 0. Fiir j = 0 stimmt die Familie der 3;p mit der
unendlichen Familie der w;_; tiberein, die 3;; stellen also hohere Verallgemeinerun-
gen der w; dar.

Wir definieren motivische Homologietheorien K (f;;)., die formal ahnlich zu
Morava K-Theorien sind, und f3;;-Selbstabbildungen detektieren. Das Hauptresultat
dieser Arbeit ist Theorem 6.12, aus dem hervorgeht, dass jedes kompakte motivische
p-vollstandige Spektrum mindestens einen Typ von ;;-Selbstabbildung besitzt.
Desweiteren konstruieren wir in Proposition 6.16 nichttriviale Beispiele solcher



Selbstabbildungen fiir jedes 3;;, und diskutieren in Bemerkung 6.17 f3;;-periodische
Strukturen in motivischen Homotopiegruppen.

Zusatzlich zu den genannten Hauptresultaten in motivischer Homotopiethe-
orie erhalten wir aus der entwickelten Theorie einige interessante Resultate in
homologischer Algebra. Zu diesen gehort eine entsprechende Theorie von ;-
Selbstabbildungen in Extgp, gp, wobei BP,BP der zur Brown-Peterson-Homologie-
theorie assoziierte Hopf-Algebroid ist, sieche Theorem 4.31. Als Anwendung erhalten
wir in Kapitel 5 eine Version des klassischen Adams-Periodizitatstheorems fiir die
Kohomologie Ext 4, der Steenrod-Algebra bei p = 2, allerdings in einer grofleren
Region als in [Ada66] (siehe Proposition 5.14), sowie ein bisher unbekanntes
entsprechendes Periodizitatsresultat fiir Extgp gp bei p = 2, sieche Theorem 5.21.
Ein weiterer interessanter, anscheinend bisher nicht in der Literatur vertretener
Fakt iiber Extpgp, gp ist eine Schranke fiir den Exponenten der p-Torsion oberhalb
einer beliebigen Geraden positiver Steigung, siehe Proposition 5.6.
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8 1 INTRODUCTION

1 Introduction

This thesis considers periodicity phenomena in the stable motivic homotopy category
over C.

Motivic homotopy theory over the ground ring C has the particularly nice
property that there exists a functor Spr — Sp, called Betti realization, from the
category of motivic spectra to the category of ordinary spectra, roughly given by
sending a smooth scheme over C to its complex points with the smooth topology.

There is a bigraded set of spheres S™" € Sp¢, where n is called the dimension
and w is called the weight. This allows one to define bigraded homotopy groups of
motivic spectra.

On p-complete objects of Spe, the Betti realization functor acts on homotopy
groups by inverting a certain element 7 € m _1(S}). (See Proposition 6.3 for
a precise statement.) Thus, one should think of motivic homotopy groups as a
refinement of classical ones: There is an additional grading given by the weight,
and there are interesting 7-torsion homotopy classes that are destroyed under Betti
realization.

For example, the Hopf map n € m1(S) admits a lift n € m11(S™°"). As it turns
out, this class is not nilpotent, meaning that all of the powers n* € m ,(S™°)
are not zero (but beginning with n?, they are 7-torsion, 7n* = 0). There are
higher-degree examples as well, for example the element Ky € 7T44724(Sm0t) discussed
in Example 6.18. Thus, the classical Nishida nilpotence theorem [Nis73], which
asserts that positive-degree elements of 7, (.S) are nilpotent, doesn’t admit a direct
motivic analogue.

The more general nilpotence theorem due to Devinatz, Hopkins and Smith
[DHSS88] also fails in the motivic setting: There is a motivic analogue MU™" of
MU (more commonly called MGL), but it fails to detect nilpotence. For example,
it doesn’t see the nonnilpotence of 7.

Similarly, the periodicity theorem fails. Classically, the periodicity theorem

says that a finite p-local spectrum X admits a non-nilpotent self-map X' X EN'e
that acts by some power of v, on BP,X. Equivalently, it acts isomorphically on
K(n).X. The n, called the type of X (and of f) is characterized as the smallest m
such that K(m).X # 0, and any two such self-maps agree after passing to suitable
higher powers of them. Motivically, on the other hand, we’ve already seen that the
2-local sphere has multiple different “types” of non-nilpotent self-maps, e.g. the
degree 2-map and the Hopf map 7.

It is therefore an interesting question to ask for a classification of types of non-
nilpotent self-maps of compact motivic spectra. This thesis gives a partial answer
towards that question. We show in Section 6 that for each compact p-complete
cellular spectrum, the motivic homotopy groups admit a minimal vanishing line in



(n,w)-grading. Concretely, Theorem 6.11 shows that there are d and ¢ such that
Tpw(X) =0

for all (n,w) with w > dn + ¢, and that d and ¢ are minimal in the sense that no
such statement holds for other d’ and ¢ with d’ < d, or with d’ = d and ¢ < ¢. We
refer to d as the slope and to c as the intercept of the vanishing line.

The possible slopes of minimal vanishing lines are quite restricted, they all are

of the form , ,
drpot _ p7+1(pl B 1)
VT (1) -2
and correspond to specific May spectral sequence generators through a connection
between p-complete motivic homotopy theory over C, the Hopf algebroid BP,BP,
and the Hopf algebra P, = F,[¢1, &, ...] C A (F,[&3,&%,...] at p = 2) which we

call the even dual Steenrod algebra.
It turns out that if X has a minimal vanishing line of slope d?}Ot, self-maps

smowo X Ly X of slope dg?‘)t, ie. :j—g = dg!‘)t behave similar to the classical case, in
that they always exist and are unique in a suitable sense. This is the statement of
Theorem 6.12. We refer to such self-maps as self-maps parallel to the vanishing
line throughout the document.

Starting with S, we can inductively take cofibres of self-maps parallel to the
minimal vanishing line, to obtain a sequence of generalized Smith-Toda complezes.
The slope of the minimal vanishing line strictly decreases in each step, and one can
see that all possible slopes are obtained. That way we obtain nontrivial examples
for each di°".

In particular, this shows that if one defines the thick subcategory C;; of the
category of finite p-complete cellular motivic spectra to consist of all those spectra
with a vanishing line of slope dg?"t, the C;; form an infinite, properly nested sequence
of thick subcategories whose intersection is trivial. So the slope of the minimal
vanishing line behaves a lot like the notion of type in classical p-local finite spectra.

The existence of such generalized Smith-Toda complexes in the motivic setting
suggests the possibility of a “f;;-chromatic motivic homotopy theory”, where
motivic homotopy groups are organized into J3;;-periodic information. We discuss
this in Remark 6.17.

We also construct motivic spectra K(f;;), whose homology theories detect
precisely self-maps of slope d?J?Ot. The K (f;;) also detect the slope of the minimal
vanishing line of X, it can be recovered as the maximal d;?"t for which K (5;;)wX #
0.

We call these objects exotic K-theories, as they share some formal similari-
ties with Morava K-theories. However, their homotopy groups are of the form
F,[a, 8! /a? at odd primes, so don’t quite look like graded fields. Furthermore,
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and more strikingly, they are typically not rings. So many of the usual nice
properties of Morava K-theories don’t carry over.

These K (f;;) make it possible to discuss f3;; self-maps of slope not necessarily
equal to the minimal vanishing line. It is there where the main difference to the
classical setting appears, as motivic spectra seem to typically have additional
self-maps of lower slope. The easiest example of this is on the sphere itself: The
minimal vanishing line of the sphere has slope 1, with corresponding 3, o self-map
n, but the sphere also admits an 35; self-map by explicit computation. This is
discussed in Example 6.18.

The existence of self-maps of lower slope shows that the thick subcategories C;;
discussed above do not constitute a full list of thick subcategories. For example, at
p = 2, the thick subcategory of all X with K (f821).X = 0 does not agree with any
of the C;;, see Example 6.18.

It is tempting to conjecture that the thick subcategories characterized by
vanishing of a single K (f3;;) or K (n) form a complete list of prime thick subcategories
of finite p-complete cellular motivic spectra. The C;; characterized in terms of slopes
are certainly intersections of such vanishing loci, since the slope of the minimal
vanishing line is characterized in terms of the K (;;).

It is not clear though whether these are actually prime thick subcategories. This
is equivalent to the question of whether K (f;;).(X ®Y') = 0 implies K ()X =0
or K(f;j)«Y =0 for compact X and Y.

A corresponding question on comodules over the dual Steenrod algebra is
as follows: For M and N finite-dimensional comodules, one can ask whether
H,(M @ N; P)) = 0 necessarily implies that H,(M;P/) = 0 or H,(N;P/) = 0,
where H,(—; Pij ) denotes Margolis homology as in Lemma 3.68.

This seems to be closely related to an open question by Margolis, see the
conjecture made in Chapter 19 of [Mar83], in the discussion following Proposition
18 there.

In addition, it is an interesting question on how the vanishing loci of the K(f;;)
relate to each other. Classically, K (n),X = 0 implies that K(n —1),X = 0 for any
compact spectrum, so all the thick subcategories obtained as vanishing loci of the
K (n) are linearly contained in each other. In the motivic setting, examples such
as S/Ry from Example 6.18 show that the situation is more complicated. In the
related setting of comodules over the dual Steenrod algebra, Palmieri has some
interesting results on the corresponding questions for Margolis homologies, see
Theorem A.1 and Proposition 3.10 in Part II of [Pal96].

The results on motivic spectra are obtained through a connection between
p-complete motivic cellular spectra and the Hopf algebroid BP,BP. This was
recently proven by Gheorghe, Wang and Xu [GWX], and roughly says that the
category of modules over a certain motivic ring spectrum S/7, obtained as the
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cofibre of 7 € W**(SI/,\), agrees with a suitable category of derived comodules over

BP,BP, we discuss this relation in Section 6.2 and restate it in Theorem 6.7.

If one works with the actual derived comodule category over BP,BP here, the
correspondence only works between compact S/7-modules, and derived comodules
whose underlying B P,-module is a perfect complex. This does not extend to the
full derived BP,BP comodule category, as these objects are not actually compact
there.

In Section 2, we discuss comodule categories in a very general, co-categorical
context, namely over arbitrary exact comonads. This allows us to define what we
call the compactly generated comodule category in Section 2.3, which is built in such
a way that it is compactly generated by comodules with compact underlying object.
In Theorem 2.44, we give a Barr-Beck like statement for compactly generated
comodule categories, suggesting that they naturally appear whenever one deals
with adjunctions between compactly generated categories. One noteworthy instance
of this phenomenon is Example 2.46, where the category of p-complete spectra is
identified with compactly generated comodules over some kind of (nontrivially)
coherent version of the dual Steenrod algebra.

In Section 2.4 and the subsequent Section 3, we specialize to comodule cate-
gories obtained from coalgebroids, a notion generalizing both Hopf algebroids and
coalgebras. Such a coalgebroid I' over a ring A gives rise, under certain flatness
assumptions, to a comonad DI' on the derived module category D Mod,. The
corresponding comodule category Comodpr(D Mod,) should be thought of as a
derived category of comodules over I, but it is built in an automatically derived
way. We partially discuss the relation to the classical construction of derived
comodule categories in Remark 2.66. In many cases, including over BP,BP and
other connected graded Hopf algebroids, they seem to coincide. Furthermore, the
compactly generated Comod(D Mody) seem to agree with the stable comodule
categories Stable(I") constructed by Hovey as explicit model categories in [HovO04].
We don’t prove these equivalences here, but we strongly suspect that for the inter-
ested reader familiar with Hovey’s construction, it will be possible to skip ahead
and follow the results of sections 4, 5 and 6 by replacing all occurences of Comod,
with Stable(T"), and providing suitable analogues of the tools we use from Section
3. The construction of ComodZ. was inspired by the alternative construction of
Stable(I") given in [BH17].

The category Comod%’( BP.BP) is the main category of interest in this thesis,
as our version of the GWX-Theorem 6.7 identifies the category of motivic S/7-
modules with a certain full subcategory of Comodg( BP.BP)" All the motivic results
are obtained by establishing them in Comod%’( BP.BP) and then lifting them from

S/r-modules to all motivic spectra via a 7-Bockstein spectral sequence.
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The corresponding results are obtained in Section 4 by reducing to smaller Hopf
algebroids. Namely, BP,BP admits a quotient Hopf algebra P,, which can be
identified with a certain subalgebra of the dual Steenrod algebra A,.

Over A,, analogues of our results on vanishing lines and self-maps have already
been obtained by Palmieri, see [Pal01]. Since we work in a slightly different setting,
we provide self-contained proofs of these results over P,. They are obtained by
describing P, through a sequence of extensions by particularly small Hopf algebras,
each of which leading to an associated Cartan-Eilenberg spectral sequence (which
arises as an Adams spectral sequence in our setting). Inductively, one sees that
only specific slopes of vanishing lines are possible, and that self-maps parallel to
the minimal vanishing line always exist.

Finally, one can lift these results to BP,BP by a similar process. We do this in
two steps, first passing from P, to BP,BP/p through a suitable Adams spectral
sequence, and then further from BP,BP/p to BP,BP through an Adams spectral
sequence that can be identified with the p-Bockstein spectral sequence. For the
latter step to work, we require a bound on the p-torsion exponent of Extgp gp
along minimal vanishing lines (Lemma 4.30), which is quite interesting in its own
right because it leads to a bound on the p-exponent of torsion in Extgp, gp above
any line of positive slope (Proposition 4.30).

Section 5 contains algebraic applications, namely a version of classical Adams
periodicity for Ext 4, with strengthened bounds (first established by May in unpub-
lished notes [May]) in Section 5.2, and an analogue for Extgp, gp in Section 5.3 that
was first conjectured by Isaksen on basis of new computer-assisted computations of
EXth*Bp by Wang.

We prove these results by carefully analyzing the intercept of vanishing lines
for various finite complexes obtained by coning off subsequent self-maps parallel to
the vanishing line, in a way that is reminiscent of the classical chromatic filtration
on homotopy groups. A discussion of these generalized Smith-Toda complexes
and related qualitative generalizations of Adams periodicity results is contained in
Section 5.1.

A usual (i.e. based on v,-periodicity) chromatic homotopy theory of BP,BP-
comodules has been developed in [BH17] already. It is not yet clear how the
Bij-based chromatic homotopy theory suggested here relates to this v,-based theory,
but we hope that it will lead to a more complete picture.
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2 Categorical Preliminaries

The main categories of interest in Section 4 are certain derived categories of
comodules, mostly over Hopf algebroids.

The classical approach to constructing these derived comodule categories is
through explicit model categories, cf. [Hov04].

We will follow a different, oo-categorical approach. In sections 2.1 and 2.2, we
consider the category of comodules over a comonad, with special attention towards
a comonad obtained from an adjunction. This theory is mostly classical, but for
completeness, and since most of the literature is phrased in terms of the dual
monadic setting (e.g. [Lurl6], Section 4.7), we review it here.

This also allows us to exhibit the machinery behind the Barr-Beck Theorem as
a very general form of the Adams spectral sequence. Special cases of this “Adams
spectral sequence of an adjunction” will play an important role in the computations
of Section 4.

In Section 2.3, we introduce the category of compactly generated comodules
Comod7 (D). This is a modified version of the comodule category considered in
sections 2.1 and 2.2, characterized by the fact that it is compactly generated.

The main motivation for the construction of Comody (D) is that a lot of
categories one might want to study through the Adams spectral sequence of an
adjunction are actually compactly generated. Typically, the Barr-Beck theorem
doesn’t apply globally in these cases. However, under suitable conditions, there
is a variant of the Barr-Beck theorem involving Comod®, see Theorem 2.44. For
example, this applies to p-complete spectra and the adjunction giving rise to the
usual HF,-based Adams spectral sequence, see Example 2.46. Theorem 2.44 will
also allow us to give a self-contained proof of a theorem of Gheorghe, Wang and
Xu [GWX] on the structure of the stable motivic homotopy category over C, see
Section 6.7.

In Section 2.4, we finally specialize to the algebraic setting. We define the notion
of a coalgebroid, a common generalization of both Hopf algebroids and coalgebras.
A coalgebroid T' over a ring A gives rise to a comonad on the (oo, 1)-category
D Mod, of derived A-modules. This allows us to apply the constructions given
in sections 2.1 and 2.3 to obtain a derived comodule category and a compactly
generated derived comodule category over I'.

For good enough Hopf algebroids I'; it seems that the compactly generated
derived comodule category we work in agrees with (the (oo, 1)-category associated
to the model category) Stable(I'), defined in [Hov04], see Remark 2.68. The main
technical difficulties in Hovey’s construction seem to come from the fact that one
derives with respect to two things at the same time, the A-module structure and
the I'-comodule structure. For example, it is not clear whether every comodule can
be resolved by comodules with underlying projective A-module. Our construction
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circumvents these difficulties by defining I'-comodules on top of the already-derived
module category D Mod 4.

2.1 Comodule categories

For D an (o0, 1)-category, Fun(D, D) is monoidal with respect to composition. A
comonad on D is a coherently coassociative comonoid 7" € Fun(D, D). Concretely,
let A, be the category of (possibly empty) finite ordered sets with order-preserving
maps. This is monoidal with respect to disjoint union (with order on Sy LI Sy given
by Sy < Sl)

Definition 2.1. A comonad over D is a monoidal functor
T € Fun®(N(AP), Fun(D, D))

Informally, such a functor is determined by its value on {0}, and natural
transformations T ({0}) = T({0,1}) ~ T({0}) o T({0}) and T'({0}) = T(0) ~ id
together with higher coherences for coassociativity and counitality.

We will typically refer to the value T'({0}) € Fun(D, D) by T as well, and will use
terminology such as “a comonad 7" € Fun(D, D)”, with the implicit understanding
that there is a chosen lift to Fun®(N(AS), Fun(D, D)), similar to the classical use
of words like “ring spectrum?”.

For such a comonad, there is an (0o, 1)-category of comodules Comodr (D),
which consists of objects X € D together with a coherent coaction X — T'(X).
Concretely, let A be the category of nonempty finite ordered sets with order-
preserving maps which preserve the maximum.

Then Apay is a left Ayj-module. Since Fun(D, D) acts on D from the left (by
application), a comonad T' € Fun(D, D) gives rise to a left action by N(A.) on D.

Definition 2.2. For a comonad T' € Fun(D, D), Comodr (D) is the (oo, 1)-category
of comodules

max

Funy s (V(AL,), D)

of left N(ASP)-module functors, with respect to the N(AZ)-module structure induced
onD by T.

Remark 2.3. This is traditionally called the category of coalgebras over T', not
comodules. We follow the naming convention used in [Lurl6], which we deemed
more appropriate for our applications, especially since everything is linear: all the
comonads we will consider later are exact, and the comodule categories over them
are related to literal categories of comodules over coalgebras and Hopf algebroids.
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Since Apax 18, on objects, a free A, module on one generator {0}, informally
such a functor X is determined by its value X ({0}) € D together with a coaction
map X ({0}) = X({0,1}) ~ T(X({0})), with higher coherences for coassociativity
and counitality of this coaction.

The functor Comody (D) — D, X — X({0}) will be called the underlying
object functor, or forgetful functor. It detects equivalences.

As for comonads, we will notationally identify a comodule X with its underlying
object, and typically omit the forgetful functor in formulas.

Remark 2.4. Note that, since Fun(D, D) acts on Fun(C, D) for any C, we can
speak more generally of comodules in those functor categories. However, we have

Funy(aory (N (ARL), Fun(C, D)) = Fun(C, Funyacr) (N (AT, D)),

so a comodule in Fun(C, D) is the same as a functor C — Comodr(D).

Since T is a comonoid in Fun(D, D), it can in particular be considered a left
comodule over itself. Concretely, restricting T along the inclusion A — AL, we
obtain a comodule structure on 7. By Remark 2.4, this implies that 7': D — D
factors through a functor T': D — Comodr(D). T is in fact right adjoint to the
forgetful functor V: Their composite on D is just T, with counit 7" = id, and
their composite on Comody(D) sends X +— T'X, with unit given by the comodule
structure map X — T'X.

We can use this adjunction to describe mapping spaces in Comodr (D).

Now let A, denote the category of nonempty finite ordered sets with order-
preserving maps which preserve the minimum.

Lemma 2.5. There is an equivalence A% — A ., obtained by sending S € Apin

to the set Map,  (5,{0,1}) with the opposite pointwise ordering.

Proof. Since order-reversal yields a covariant equivalence Ay, — Apag, it is
sufficient to check that the functor

Aop — Aminv S = MapAmin<Sa {07 ]-})

with the pointwise ordering (rather than the opposite one), is an equivalence.

First observe that this is well-defined: The minimum in Map, (5, {0,1}) with
respect to the chosen ordering is the constant 0 map, which is obviously preserved
by induced maps.

To see that it is an equivalence, we show that it is self-inverse. Namely, there is
a natural map

S — MapAmin (MapAmin (Sv {07 1})7 {07 1})7

adjoint to the evaluation map. It is injective, since for any two different x < y in
S, there exists an f : S — {0,1} in Ay, with f(x) =0, f(y) = 1. Finally, note
that Map, . (S,{0,1}) has the same cardinality as S. O
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Remark 2.6. The reverse pointwise ordering on Mapy (.S, {0, 1}) is more natural
when viewed in the perspective of cuts: A cut of S is a decomposition S = Sy LI S}
with Sy < S1. The set of all cuts Cut(S) agrees with Map, (S, {0,1}) by sending
Sp to 0, S; to 1, and it is natural to order cuts in such a way that S U0 is the
maximal one, i.e. by inclusion on Sj.

Recall that an augmented cosimplicial object in C is a functor N(A,) — C,
and a split cosimplicial object is a functor N(Ap;,) — C. Split cosimplicial objects
restrict to augmented cosimplicial objects, which restrict further to cosimplicial
objects, via the functors A — A, — Ap;,. Here the first functor is the canonical
inclusion, the second is the functor which adds a disjoint minimum to each ordered
set. Similarly to how the simplicial index category A is generated by boundary maps
and degeneracy maps, A, is generated by the same boundary and degeneracy
maps, as well as one “extra degeneracy” s_; on each level.

If X* is a split cosimplicial object, we refer to the value on the set {0,...,n} €
Apax by X" (this is compatible with the restrictions to A, and A). The
augmentation gives a map

X1 = lim X°,
N(A)

which is an equivalence. This is the dual of Lemma 6.1.3.16 in [Lur09].

Definition 2.7. For a comodule Y € Comodr (D), the cobar resolution T*T'Y is
the split augmented cosimplicial object, natural in'Y , obtained from considering the
comodule structure diagram in Funya,)(N(AP ), D) as a covariant functor from
N(Anm) to D, using Lemma 2.5.

Informally, the diagram takes the form
Y 5 TY =2 TTY 5 --- |

with coboundary maps obtained from the coaction map 7' — TY and the comultipli-
cation map T'— T'T, and codegeneracy maps (and splits, i.e. “extra degeneracies”)
obtained from the counit on 7.

Since the cobar resolution is split, it exhibits ¥ as a limit of objects in the
essential image of 7. We can use this together with the adjunction Comody (D) = D
to describe mapping spaces:

Lemma 2.8. For X,Y € Comodr (D), we have
MapComodT(D) (X7 Y)

= lim(Mapcomody () (X TY) = Mabcomodr(p) (X, TTY) =)
= lim(Mapp (X, Y) = Mapp (X, TY) 3 ---)
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Given comonads T' € Fun(C,C),T" € Fun(D, D) and a functor F': C — D, we
want to understand in what sense F', T" and 7" need to be compatible to give rise
to a functor Comodr(C) — Comody (D) given by F' on underlying objects.

We let Ay be the category whose objects are (possibly empty) finite ordered
sets with fixed decomposition Sy LI S, Sy < 57.

Morphisms are order-preserving maps f : S — T with the requirement that
f(51) € Th.

Note that Acye admits a A, -A-bimodule structure by disjoint union from the
left and from the right.

Definition 2.9. Let T € Fun(C,C) and T" € Fun(D, D) be comonads. A morphism
F:T — T is an element of

FunN(Aip)—N(Aip)—bimod(N(Ac()]it)7 FU.H(C, D)),

where A acts on the right through the restriction of the right Fun(C,C) action on
Fun(C, D) along T, and on the left through the restriction of the left Fun(D, D)-
action on Fun(C, D) along T".

Note that Acy is generated as a A -A_ -bimodule by the object @ LI (), and
the morphism {0} U® — @ U {0}. So informally, we can think of a morphism
F : T — T as consisting of an underlying functor F({0}) € Fun(C,D), and a
natural transformation F({0})oT — T"o F({0}). As for comonads and comodules,
we will identify F' notationally with its underlying functor.

Now, given a such a morphism F' : T — T” between comonads over C and D, and
a T-comodule X in C, we can tensor the bimodule functor F': N(AZ,) — Fun(C, D)
with the module functor X : N(A% ) — C to obtain a left N(A%”)-module functor

max

N (A% ®aw Adiy) N(AZ) Onar) N(Afy) = Fan(C, D) @pune,c) € — D
Here Acyt ®a, Amax can be identified with the category of finite ordered sets with
cut Sy U S; with S; nonempty and morphisms order-preserving maps f : S — T
with f(S7) C T1, and such that f preserves the maximum.

Definition 2.10. For a morphism of comonads F : T — T’, the corresponding
functor F, : Comodr(C) — Comody (D) is obtained as the composite

D),

max max max’

FunN(Aip) (N(AOP ), C) — FunN(Aip)(N(A%%t(@AipAOp ), D) — FunN(Aip)(AOP

where the last map is restriction along the functor Apax — Acut ®a, Amax sending

S to (S'\ {max S}) U {max S}.
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Remark 2.11. For a functor F, : Comodr(C) — Comody (D) associated to a
morphism F : T — T’, we have a commutative diagram

Comodr(C) . Comody (D)

l |

C a D

So F, acts on underlying objects just as F'.

Lemma 2.12. The natural transformation F'T = T'F, which is part of the struc-
ture of the morphism F : T — T', refines to a natural transformation

FT=TF

in Fun(C, Comodr (D)), i.e. the natural transformation is compatible with the
canonical comodule structures we can put on the individual terms.
The composite map

~ R ~
MapComodT(C) (X7 TY) — MapComodT(D) (F*X7 F*TY)
— Mabcomodq () (F2 X, T'FY)
corresponds under the adjunctions between the forgetful functors and f, f’, to the

map
Map,(X,Y) & Mapp(FX, FY).

Proof. The first part follows from the definition of the comodule structure on F,.
For the second, we have the following commutative diagram

Mapcomody ¢ (X, TY) ———=Mape (X, TY') =2 Map, (X, Y)
LF* F F
MaP gomod, (p)(Fu X, FLTY) = Mapp, (FX, FTY ) % Map,,(F X, FY)

~ id

Mapcomod,, (o) (Fe X, T'FY) Y Mapy, (FX, T'FY) ™% Map,(FX, FY)

with upper and lower horizontal composites inducing the adjunction. The
commutativity of the lower right square follows from the fact that the natural
transformation F'T" = T'F respects counits by the definition of morphisms 7" —
T O
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Lemma 2.13. If F : T — T is a morphism of comonads whose underlying functor
F : C — D has a right adjoint G, F, has a right adjoint G* : Comodz (D) —
Comodr(C). It satisfies G*TY = TGY on free comodules, and is computed on
arbitrary T'-comodules Y as the totalization of a cosimplicial object

G*Y =lim(TGY = TGT'Y = ---).
Proof. By Lemma 2.12, the composite map

' F ~
Mapcomodr () (X, TGY) = Mapcomoay () (Fu X, F.TGY)
— MapComodT, (D)(F*X, f/FGY)

- MapComodT/ (D) (F*X, f’Y) (]_)

corresponds under the adjunction between the forgetful functor and T' to the
equivalence Map(X, GY) ~ Map,(FX,Y"). Therefore, it is an equivalence. Since
a comodule map T Y, — f’Yg induces a map, natural in X, between the associated
terms on the right side of (1), it does so between the terms on the left. By the
Yoneda lemma, this means that it induces a comodule map TV